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Abstract: A single paragraph Arbuscular mycorrhizal fungi (AMF) establish symbiotic 

relationships with many crops. These soil microbiotas improve the soil fertility through the soil 

physical, chemical and biological properties. extending the root absorbing area. In return, the 

symbiont receives plant carbohydrates for the completion of its life cycle. AMF also helps plants to 

cope with biotic and abiotic stresses such as extreme temperature, heavy metal, diseases, and 

pathogens. For soil physical properties, the mechanisms used by AMF are the production of a 

glycoprotein, glomalin, which creates a high quality of soil macro-aggregations. These macro-

aggregations control soil erosion, nutrients and organic matter losses. For soil chemical properties, 

AMF produce acids and an enzyme called phosphatase. This enzyme hydrolyzes the inorganic 

phosphorus and the rock phosphate (RP) hence making P available in the soil for plant uptake. AMF 

also are involved in soil nitrogen, carbon and trace element cycling. Regarding the biological 

component of the soil, AMF influence the composition, diversity and activity of microbial 

communities in the hydrosphere. They also work in synergy with others soil microorganisms to 

improve soil fertility, plant growth and resistance against some diseases. In this review, we present 

the contribution of AMF on soil fertility and importance in polluted soils. 
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1. Introduction 

The most significant threats to soil function at global level are soil erosion, soil 

organic carbon, excessive use of input and nutrient imbalance [1]. The depletion of soil 

fertility in the world has increased due to unsustainable land management practices such 

as overgrazing, bush burning, continuous crop cultivations, and tillage practices [2]. 

However, inoculation with Vesicular Arbuscular Mycorrhizae (AMF) has been identified 

as an ecofriendly approach to improve soil fertility [3]. AMF are the most widespread soil 

microorganisms that form a symbiotic relationship with more than 80% of agricultural 

crops [4], except for few plant families such as Amaranthaceae, Brassicaceae, Cruciferae, 

Chenopodiaceae, Caryophyllaceae, Juncaceae, Cyperaceae and Polygonaceae which do not exhibit 
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any association  [5]. They can be found in various ecosystems worldwide [6]. AMF is a 

key component of the soil microbiota and belongs to the glomeromycota phylum. This 

phylum is divided into 3 classes (Archaeosporomycetes, Glomeromycetes and 

Paraglomeromycetes), 5 orders (Archaeosporales, Diversisporales, Gigasporales, Glomerales 

and Paraglomerales), 14 families, 29 genera and more than 240 species [7], [8]. Several 

species of AMF have been studied in the world, however, the most species use as model 

are: Funneliformis mosseae (previously known as Glomus mosseae), Gigaspora rosea, Gigaspora 

margarita, Gigaspora gigantea and Rhizophagus irregularis (previously known as Glomus 

intraradices and Glomus irregulare) [9]. AMF are not parasite but obligate symbionts that 

need a host plant to complete their life cycle. They improve crops productivity by 

increasing water and nutrients uptake such as nitrogen (N), phosphorus (P) and 

potassium (K) [10]. The increase of the host plant nutrients uptake is due to the 

characteristics of AMF mycelium. These mycelium or hyphae absorb nutrients by 

osmotrophy and explore more surface area compared to non-mycorrhizal roots [11]. In 

return, AMF benefit carbohydrates from the host plants [12]. AMF are an extremely 

ancient symbiosis, indeed, based on archeologic records it dates back to the appearance 

of terrestrial plants (460 million years ago) and would have accompanied vascular plants 

to colonize the terrestrial environment [13]. AMF do not only have an impact on plant 

growth and production but it has been also reported that they improve some soil 

characteristics such as soil aggregation, soil nutrients availability, water retention, 

microbial activities, nitrogen, carbon and phosphorus cycling and soil acidity correction 

[14]–[16]. Several studies have reported that they play a crucial role in plant resistance 

against biotic and abiotic stresses. The aim of this review is to summarize knowledge 

about AMF symbiosis, in particular the beneficial effects on soil. First, the role of AMF in 

soil physical, chemical and biological properties is considered. The contribution of AMF 

in soil aggregation, nutrients availability and boosting beneficial soil microorganism is 

discussed. Finally, the role diversity of interactions between AMF and other soil 

microorganisms are examined (Figure 1). 

 

Figure 1. Effects of vesicular arbuscular mycorrhiza on improving soil fertility. 

2. Role of AMF on soil physical properties  

2.1 Importance of AMF on soil structure 

AMF have a beneficial effect on soil structure. The AMF mycelium present in large 

quantities in soils, between 81 and 111 m per cm3 of soil [17]. These mycelia or hyphae 

have the property create stable soil aggregations. Mycorrhizal fungi act as a long-term soil 

binding agent through the production of a glycoprotein (glomalin) by the extramatrical 

mycelium [18], [19]. This glomalin is a hydrophobic, thermo-tolerant or heat-tolerant, 

resistant to high temperature of the soil. The hydrophobic character of the glamalin 

confers resistance of soil aggregations to water, the production of this substance reaches 

its maximum in senescent mycelia. This slowly biodegradable by bacteria and fungi in the 

soil. Its main function is to stabilize soil aggregations, like a glue that combines clay, silt 
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and fine sand, with major effects on the physical properties of soils. The formation of soil 

aggregations is favored by glomalin [20], [21], acting like a glue binds together the soil 

micro-aggregations (diameter less than 250 µm) to form stable macro- aggregations [22], 

[23]. This soil macro- aggregations ensure better water infiltration, reducing surface 

runoff, control soil erosion, reduce nutrients and organic matter losses, increase gas 

exchange better retention of water and minerals, especially potassium therefore, improve 

crop productivity [16], [24]. In addition, the hyphae network is constantly renewing itself 

and the dead mycelium also preserves soil structure until decomposition [25]. The dead 

mycelium contributes to the stocks of organic matter and physical binder involved in soil 

aggregation [26]. All of these mechanisms reduce the risks of soil compaction and promote 

soil fertility [27]. It can be said that glomalin is very closely related to soil fertility. 

3. Role of AMF on soil chemical properties  

AMF fungal symbionts are recognized as being major microbial components in the 

development of the main biogeochemical cycles of soils (P, N, and C). This results in an 

improvement in the growth of mycorrhizal plants.  

3.1. Contribution of AMF on soil phosphorus availability 

Phosphorus is an essential element for plants. It is a component of many molecules such 

as Adenosine triphosphate (ATP), nucleotides, phospholipids, certain enzymes and co-

enzymes [28], [29]. Most soils contain large amounts of organic and inorganic phosphorus 

estimated between 200 and 3000 mg / kg of soil [30]. The accumulation of P in soils from 

fertilizers is known as legacy P (Sattari et al., 2012). This legacy P has the potential to play 

a key role in maintaining agricultural productivity [31]. It has been revealed that the 

accumulated P in soils is sufficient to sustain crops yields worldwide for about 100 years 

[32]. Unfortunately, only a few quantities of this soil’s P is available for the plants [33]. The 

phosphorus is most often in the form of inorganic orthophosphate adsorbed to soil cations. 

Thus, the availability of soil P is affected by the presence of iron (Fe), calcium (Ca) and 

aluminum (Al) oxides which fix phosphorus as iron phosphate (FePO4), tri-calcium 

phosphate (Ca3(PO4)2), and aluminum phosphate (AlPO4) [34]. Therefore, only a small 

proportion (less than 1%) of the legacy P is available to plants [35]. Phosphorus is in fact 

taken in the form of orthophosphates (inorganic phosphate Pi) by plants, but this mineral 

form of phosphorus is in limited quantity in the soil and, under the action of root sampling, 

areas are quickly created depletion around the roots due to a relatively slow supply of P 

from the solid phase of the soil and the low mobility of P in soils [36]. The reservoir of P 

must be hydrolyzed to make it available in the soil for plants uptake. AMF play an 

important role in improving P availability in the soil. Indeed, it is a P activator which can 

accelerate the process to transform P into bio-available forms via a range of chemical 

reactions and biological interactions [37]. To make the phosphorus available in the soil, 

AMF hydrolyze the organic P into inorganic phosphorus [38]. The mechanism used by 

AMF is linked to the production of enzymes named phosphatase [39]. This phosphatase 

release P from organic P or inorganic orthophosphate by hydrolyzing phosphoric acid 

monoesters into P ion and a molecule with a free hydroxyl group [40]. AMF can also 

solubilize inorganic phosphate into soluble forms through the processes of acidification, 

chelation, exchange reactions and production of organic acids, H+ and metabolites [41], 
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[42]. It is demonstrated that the metabolic activities of AMF produce alkaline phosphatases 

which cleave substrates present in the soil and make the phosphate accessible [43]. 

Moreover, the organic acid produced by AMF solubilizes insoluble mineral phosphate into 

a soluble form [44]. In addition, AMF help to release P from rock phosphate fertilizer. Rock 

phosphate (RP) has a low effectiveness. This is due to when added as fertilizer only one 

part is accessible to the plants of and the remaining part is converted into insoluble fixed 

forms [45], [46]. Thus, AMF can solubilize insoluble phosphate from RP to make it 

available in the soil (Andrino et al., 2020). In fact, AMF convert the insoluble P into soluble 

forms through their production of acids during their metabolic activities [47]. 

3.2 Contribution of AMF on soil nitrogen availability 

Like phosphorus, nitrogen (N) is a vital component for plants. It is a constituent of 

phospholipids, coenzymes and amino acids [48]. In the soil, N is present in organic and 

mineral forms (nitrites, nitrates and ammonium ions). The ammonium form is weakly 

absorbed by plants that prefer nitrogen in the form of nitrate (NO3-). AMF help to mobilize 

the inorganic form of nitrogen NH4+ from the soil [49]. The AMF mycelium is able to take 

up nitrogen in the form of ammonium ions (NH4+) in the form of nitrates (NO3-) and in the 

form of amino acids [50]–[52]. Indeed, AMF improve the degradation of organic matter in 

order to increase N bioavailability in the soil [53]. Nitrogen availability requires the 

activity of local transporters in the AMF hyphae. It has also been demonstrated that 

mycorrhizal associations could play a significant role in the decomposition and 

mineralization of plant organic matter and mobilize nutrients, particularly nitrogen, for 

the benefit of the host plant [54]. 

3.3 Contribution of AMF on soil carbon cycle and C sequestration 

AMF play an essential role in the global C cycle. In fact, AMF hyphae are involved in C 

translocation into the soil and provide a key link in the terrestrial C cycle [55]. Indeed, 

AMF are efficient agents to improve carbon sequestration in a mechanism of translocation 

C away from the high respiratory activity around the root and into the soil, including soil 

aggregations [56]. It has been demonstrated that mycorrhizal roots create a sink demand 

for carbon. When the atmospheric CO2 increase, the allocation of C from the plants to AMF 

also increase and stimulates the growth of AMF [57]. This C demand is provided by the 

host plant from the C fixed through photosynthesis [16]. In addition, AMF extramatical 

hyphae represent 20 to 80% soil microbial biomass which consist 15% of soil organic C 

[58], [59]. As we already discussed above, AMF play also a critical role in the formation 

and maintenance of soil aggregations through production of Glomalin. This glomalin 

protects organic matter from microbial degradation, increases the hydrophobicity and 

stability of macro-aggregations which control soil carbon loss and increase soil carbon 

stocks (C sequestration) [60], [61].  

3.4 Contribution of AMF on soil trace elements transfer 

Trace elements play roles in enzymatic activities involved in photosynthesis, oxidative 

respiration, protection against free radicals or even lipid biosynthesis[62]. It is known that 

AMF allow better absorption of low mobile trace elements in soils, such as potassium (K), 
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calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), iron (Fe), manganese (Mn) and 

cobalt (Co) [63], [64]. For instance, according to [65], the level of Zn, Fe and Mn is twice in 

mycorrhizal peanut plants compared to non-mycorrhizal plants. It has also been revealed 

that mycorrhizal inoculation improved Zn and Cu nutrition in soybeans and clover  [66]. 

However, when some of these elements are present in high quantities and therefore 

possess a toxic character, the mycorrhization can play a role of protection of the plant, by 

a strong retention of these elements [67].  

4. Role of AMF on sol biological properties 

Microorganisms are one of the most important soil component. These microorganisms 

interact with each other and with their environment to contribute to the functioning of the 

soil and thus participate in the provision of ecosystem services necessary for our survival 

(plant production, purification of pollutants, etc.) [68]. Soil is therefore a very active 

biological reactor where diverse biochemical reactions and essential ecological processes 

happen (in particular the decomposition of organic matter, the biogeochemical cycles of 

the elements, etc.) [69]. The microbial activities in the soils contribute to its fertility 

through synergies between microorganisms, competition and parasitism (Topalović et al., 

2021). Within the soil, AMF interact with wide range of microorganisms to better improve 

soil fertility. It has been demonstrated that the secretions of AMF influence the 

composition and activity of microbial communities in the rhizosphere [70]. The biological 

activities of AMF lead to the appearance of positive, neutral, or negative relationship 

between the AMF and other soil microorganisms.  

4.1 Positive interaction between AMF and soil microorganisms 

Many microbial components of the soil work synergistically with AMF, promoting 

growth and protection of plants [71], [72]. The positive interactions involve nutrient 

acquisition, biological control of root pathogens, improvement of plant tolerance to abiotic 

stress and soil fertility. AMF communities influence the physicochemical environment of 

the rhizosphere and control various soil microbial interactions [73]. Mycorrhization 

directly affects the quantity and quality of root exudates. These exudates influence the 

composition of the microflora of the rhizosphere [74]. AMF activity results in an increase 

in the diversity and abundance of soil parasite antagonists [75].  For instance, the presence 

of Glomus intraradices in the soil stimulate the production of an antibiotic by Pseudomonas 

fluorescens. This antibiotic known as 2,4-diacetylphloroglucinol, protect the host plants 

against Gaeumannomyces graminis [76]. Thus, this interaction in the rhizosphere can shape 

the Pseudomonas to remedy the imbalance caused by excessive proliferation of 

Gaeumannomyces graminis.  Several studies have demonstrated that AMF increase the 

biomass of soil saprotrophic fungi, which allows the recycling of plant organic matter into 

mineral matter [77], [78]. It has been also revealed that AMF has a deletion effect on certain 

Gram-positive and Gram-negative bacteria groups and other fungi [79]. These changes in 

microbes affect the production of bioactive metabolites and the decomposition processes 

of organic matter [80]. AMF also interact with microorganisms in the rhizosphere and 

promote the development of bacteria which secrete organic acids responsible for 

dissolving phosphorus [81]. In acidic soil, AMF can exudate chelating agents that release 

phosphorus from the iron and aluminum molecules in the soil. In calcareous soil, AMF 
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can acidify the soil thanks to organic acids, thus promoting the solubilization of 

phosphorus.  

In addition, AMF can also interact other beneficial soil microorganisms such as Rhizobia, 

Plant Growth Promoting Rhizobacteria (PGPR) and Frankia. First, it is known that, AMF 

can work in synergy with nitrogen-fixing bacteria such as rhizobia to provide woody and 

crop legumes with essential soil nutrients [82]. For instance, the inoculation combination 

with AMF and Rhizobia is very effective to promote the growth of Faba bean compared 

to a sole inoculation [83]. A tripartite relationship can also be established between AMF, 

nitrogen-fixing bacteria and phosphorus solubilizing microorganisms to better help host 

plant to benefit from P [84], [85]. Second, the synergistic interaction between AMF and 

Frankia (nitrogen fixing actinobacteria) improve actinorhizal plants height, the numbers 

and dry weight of root nodules, leaf area, shoot height, total biomass, and N and P leaf 

contents. For instance, a study by [86] demonstrated that a combination of AMF, Frankia 

and ectomycorrhizal fungi increase Casuarina equisetifolia height. Regarding the impact of 

inoculation with AMF and Frankia combination on leaf area, shoot height, total biomass, 

and N and P leaf contents of Black alder trees (Alnus glutinosa), results revealed that a 

significant increase in these parameters compared to the non-inoculated control [87]. 

However, a rare case has shown a negative effect of dual inoculation between Frankia and 

AMF that has a depressive effect on plant biomass, probably due to a competition for 

carbohydrate between these two microorganisms. Lastly, AMF also interact with PGPR. 

This microorganism plays an important role in soil fertility and plant growth using 

various mechanisms such as ammonia production, N fixation, solubilization of mineral 

phosphate, and other essential nutrients, production of plant hormones, and control of 

phytopathogenic microorganisms [88]. Moreover, the combination of AMF and Bacillus 

subtilis increase also shoot and root dry weight, nodule number and leghemoglobin 

content than those inoculated with sole AMF or Bacillus subtilis [89]. This is due to the 

nitrate and nitrite reductase and nitrogenase activities and the contents in total lipids, 

phenols, fiber, and osmoprotectants such as glycine, betaine, and proline [89]. 

5. Contribution of AMF in phytoremediation of polluted soils 

Although Although AMF play roles in soil biostabilisation, biofertilization and 

bioprotection, they can be used as curative tools in the biological treatment of polluted 

soils. This is called phytoremediation assisted by AMF [90]. Phytoremediation is a 

biological method of remediation and management of polluted soils [91]. It uses the 

natural capacity of plants and their associated microbiota to immobilize, contain and / or 

biodegrade environmental contaminants through various mechanisms such as 

phytostabilisation, phytoextraction and phyto-rhizodegradation [92]. This technology is 

judged to be in line with the sustainable development than physicochemical techniques, 

which despite their efficiency, lead to the alteration of the biological properties of the soil 

[93]. In addition to being ecological, phytoremediation has many advantages: less 

expensive, applicable to large areas of contaminated soils, easy to implement, generating 

little soil disturbance, exhibiting good landscape integration and good acceptance by the 

soil.  
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Table 1 shows the effects of some AMF species on soil pollutants. AMF have been involved 

in mitigating the harmful effects of pollutants and make it possible to clean up soils 

contaminated by heavy metals [94], and aromatic hydrocarbons polycyclic (PAH) [95], 

pesticides [96], [97] and fungicides [98]. Heavy metals are a major agricultural soil 

constraint because they can have long-term effects on soil functioning [99]. They are 

known to alter important intrinsic proteins of plant membranes such as H+-TPases [100]. 

They induce the production of reactive oxygen species (ROS) which damage plant tissues 

[101] leading to chlorosis, growth retardation, root browning and other harmful effects on 

photosynthesis systems. According to [102], there are a series of mechanisms and 

symbiotic effect such as the metal binding capacity of fungal mycelium in the rhizosphere, 

which can help mycorrhizal plants to tolerate heavy metals.  In fact, in the presence of 

toxic substances, AMF have the ability to change their hyphal architecture by promoting 

the linear growth of germinal hyphae. Amongst the strategies used include 

immobilization of metal compounds, precipitation of polyphosphate granules in the soil, 

adsorption to chitin in the fungal cell walls and chelation of heavy metals inside the 

fungus [103]. AMF can bind heavy metals beyond the plant rhizosphere by glomalin 

activities [104]. According to [105] association between saprophytic rhizosphere and AMF 

isolated from Cd-polluted soils plays an important role in the development and metal 

tolerance by plants and in soil bioremediation. AMF present multiple interests in the 

phytoremediation of polluted soils. They mitigate the phytotoxicity of pollutants through 

their ability to stimulate the defenses of plants against abiotic stresses such as pollutants.  

They promote the elimination of both metallic and organic pollutants. AMF contribute to 

the immobilization of Element-Trace Metal trace (ETM) in polluted soils by modifying the 

structure of the soil through the action of the mycelial network and the production of 

glomalin [106]. The production of glomalin stabilize the soil and immobilize metals and 

thus reduce metal stress in mycorrhizal roots [107]. Several studies have also 

demonstrated that AMF inoculation promotes the dissipation of persistent organic 

pollutants such as polycyclic aromatic hydrocarbons [108] and polychlorinated biphenyls 

[109]. In fact, AMF stimulate and modify the structure of microbial communities in the 

rhizosphere, particularly saprotrophic bacterial and fungal populations in the 

mycorrhizosphere. Thus, these saprotrophic bacterial and fungal biodegrade the organic 

pollutants compounds in the rhizosphere [108]. A study carried out by [110] revealed that 

that AMF (Glomus intraradices) associated with chicory roots improve the dissipation of 

anthracene by accumulating this polycyclic aromatic hydrocarbon in lipid globules, both 

root and fungal cells. 
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Table 1: Examples of some AMF species that have impact on pollutants remediation 

5. Conclusions 

Low-input sustainable cropping systems can only be viable through better 

knowledge and mastery of biological interactions in the agro-systems. Mycorrhizal fungi 

appear among the most important soil organisms to consider. AMF are directly involved 

in mineral nutrition, water absorption and protection against pollutants and certain biotic 

and abiotic stresses. The activities and interaction of AMF with other microorganism 

influence directly or indirectly the soil physical, chemical and biological component 

through their beneficial or detrimental activities. They improve soil fertility and mobilize 

the legacy P which play a vital role in maintaining agricultural productivity. However, 

more research is needed to evaluate the quantity of carbon fixed by the AMF, knowledge 

gap means that VAM cannot currently be included in the models of reduction the rate of 

atmospheric carbon there is a need to improve and apply analytical methods for 

evaluating parameters such as the quantity of carbon fixed by the AMF. This knowledge 

gap means that AMF cannot currently be included in the models of reduction the rate of 

atmospheric carbon. To remedy this situation, we recommend that laboratory, greenhouse 

and field experiments be conducted using rigorous standard protocols. This is how 

mycorrhizae will be able to contribute to the establishment of a new "green revolution" 

which, unlike the first, will this time be more in line with sustainable development. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

title, Table S1: title, Video S1: title. 
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